
Cost benefit analysis of obesity 
interventions – technical appendix 

HealthLumen on behalf of Nesta 



Overview 

HealthLumen’s simulation consists of two models. The first model uses a regression 
model which calculates the predictions of risk factor trends over time based on data 
from rolling cross-sectional studies. The second model performs a monte carlo 
microsimulation of a virtual population, generated with demographic characteristics 
matching those of the observed data. The health trajectory of each individual from 
the population is simulated over time allowing them to contract, survive or die from a 
set of diseases or injuries related to the analysed risk factors. A detailed description 
of the two modules is presented below. 

Model one: Predictions of risk factors over time 

Body mass index (BMI) (as well as other risk factors) is categorised into groups 
based on the World Health Organization cut-offs [1]. 
For each RF, let N be the number of categories for a given risk factor, e.g. N = 4 for 
BMI. Let = 1, 2, …, N number these categories and denote the prevalence of 𝑘 𝑝

𝑘
(𝑡) 

individuals with RF values that correspond to the category at time t. We estimate 𝑘 
using multinomial logistic regression model with prevalence of RF category 𝑝

𝑘
(𝑡) 𝑘 

as the outcome, and time t as a single explanatory variable. For , we have 𝑘 < 𝑁

The prevalence of the first category is obtained by using the normalisation constraint 

. Solving equation for , we obtain 
𝑘=1 

𝑁 

∑ 𝑝
𝑘
(𝑡) = 1 𝑝

𝑘
(𝑡)

which respects all constraints on the prevalence values, i.e. normalisation and [0, 1] 
bounds. 

Multinomial logistic regression 

Measured data consist of sets of probabilities, with their variances, at specific time 
values (typically the year of the survey). For any particular time the sum of these 
probabilities is unity. Typically, such data might be the probabilities of low-risk, 
medium-risk, or high-risk as they are extracted from the survey data set. Each data 
point is treated as a normally distributed1 random variable; together they are a set of 

1 Depending on the circumstances this assumption will be more or less accurate and more or less necessary. In 
general, it is both extremely useful and accurate. For simple surveys the individual Bayesian prior and posterior 
probabilities are Beta distributions – the likelihood being binomial. For reasonably large samples, the 



N groups (number of years) of K probabilities | iÎ[0,N-1]}. For each year the set of K 
probabilities form a distribution – their sum is equal to unity. 

The regression consists of fitting a set of logistic functions {pk(a, b, t)|kÎ[0,K-1]} to 
these data – one function for each k-value. At each time value the sum of these 
functions is unity. Thus, for example, when measuring obesity in the three states 
already mentioned, the k = 0 regression function represents the probability of being 
healthy weight over time, k = 1 the probability of being overweight and k = 2 the 
probability of being obese. 

The regression equations are most easily derived from a familiar least square 
minimization. In the following equation set the weighted difference between the 
measured and predicted probabilities is written as S; the logistic regression functions 
pk(a,b;t) are chosen to be ratios of sums of exponentials (this is equivalent to 
modelling the log probability ratios, pk/p0, as linear functions of time). 

The parameters A0, a0 and b0 are all zero and are used merely to preserve the 
symmetry of the expressions and their manipulation. For a K-dimensional set of 
probabilities there will be 2(K-1) regression parameters to be determined. 

For a given dimension K there are K-1 independent functions pk – the remaining 
function being determined from the requirement that a complete set of K forms a 
distribution and sums to unity. 

Note that the parameterization ensures that the necessary requirement that each pk 

be interpretable as a probability – a real number lying between 0 and 1. 

The minimum of the function S is determined from the equations: 

approximation of the beta distributions by normal distributions is both legitimate and a practical necessity. For 
complex, multi-PSU, stratified surveys, it is again assumed that these base probabilities are approximately 
normally distributed and, again, it is an assumption that makes the analysis tractable. 

Depending on the nature of the raw data set it may be possible to use non-parametric statistical methods for this 
analysis. This is possible for the HSE and GHS data sets of this study but when this has been done the authors 
can report no discernible difference in the results. 
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noting the relations 

The values of the vectors a, b that satisfy these equations are denoted . They 

provide the trend lines, , for the separate probabilities. The confidence 
intervals for the trend lines are derived most easily from the underlying Bayesian 
analysis of the problem. 

Bayesian interpretation 

The 2K-2 regression parameters {a,b} are regarded as random variables whose 
posterior distribution is proportional to the function exp(-S(a,b)). The maximum 
likelihood estimate of this probability distribution function, the minimum of the 

function S, is obtained at the values . Other properties of the (2K-2)-dimensional 
probability distribution function are obtained by first approximating it as a 
(2K-2)-dimensional normal distribution whose mean is the maximum likelihood 
estimate. This amounts to expanding the function S(a,b) in a Taylor series as far as 

terms quadratic in the differences about the maximum likelihood 

estimate . Hence 

The (2K-2)-dimensional covariance matrix P is the inverse of the appropriate 
expansion coefficients. This matrix is central to the construction of the confidence 
limits for the trend lines. 
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Estimation of the confidence intervals 

The logistic regression functions pk(t) can be approximated as a normally distributed 

time-varying random variable by expanding pk about its maximum 

likelihood estimate (the trend line) 

Denoting mean values by angled brackets, the variance of pk is thereby 
approximated as 

When K=3 this equation can be written as the 4-dimensional inner product 

where . The 95% confidence interval for pk(t) is centred given 

as . 

Model two: Microsimulation Model 
Microsimulation model overview 

Simulated people are generated with the correct demographic statistics in the 
simulation’s start-year. In this year women are stochastically allocated the number 
and years of birth of their children – these are generated from known fertility and 
mother’s age at birth statistics (valid in the start-year). If a woman has children then 
those children are generated as members of the simulation in the appropriate birth 
year. The microsimulation is provided with a list of relevant diseases. These 
diseases used the best available incidence, mortality, survival, relative risk and 
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prevalence statistics (by age and sex). The virtual population is initialised with 
diseases by simulating each individual from birth until the start year of the model 
simulation. It is assumed that a person can die before the model start year. It is 
assumed that at initialisation the diseases are independent random variables. 

During the course of their lives, simulated people can die from one of the diseases 
caused by the particular risk factor that they might have acquired or from some other 
cause. The probability that a person of a given age and gender dies from a cause 
other than the disease are calculated in terms of known death and disease statistics 
valid in the start-year. It is constant over the course of the simulation. The survival 
rates from the risk factor-related diseases will change as a consequence of the 
changing distribution of the risk factor in the population. 

The microsimulation incorporates an economic module. The module employs 
Markov-type simulation of long-term health benefits, health care costs and 
non-health care related costs of specified interventions. It synthesises and estimates 
evidence on and cost-utility analysis. The model is used to project the differences in 
quality-adjusted life years (QALYs), lifetime health-care costs, premature mortality 
costs and indirect costs as a consequence of interventions over a specified time 
scale. Outputs can be discounted for any specific discount rate. Incremental cost 
effectiveness ratios (ICERs) are calculated based on costs per QALY gained 

Population module 

The population module contains several datasets which can be edited by the end 
user through a user interface. The population is created in the start-year and 
propagated forwards in time by allowing females to give birth and also has the ability 
to incorporate population projections (i.e. migration through minimum arrivals and 
departures). People within the model can die from specific diseases or from other 
causes. The <deaths by year by sex by age> file is a necessary input to the model 
when population projections are being used valid in the start year and usually 
referred to as the deaths from all causes file. This module is flexible and allows the 
user to run open and closed populations with no births. 

Distributions 

Distribution name symbol Note 
MalesByAgeByYear 𝑝

𝑚
𝑎( ) Input in year0 – probability of a male having age a 

FemalesByAgeByYear 𝑝
𝑓
𝑎( ) Input in year0 – probability of a female having age a 

BirthsByAgeofMother 𝑝
𝑏
𝑎( ) Input in year0 – conditional probability of a birth at age a| 

the mother gives birth. 
NumberOfBirths 𝑝

𝑙
𝑛( ) lºTFR, Poisson distribution, probability of giving birth to n 

children 
MaleDeathByAge 𝑝

𝑊𝑚
𝑎( ) Input in year0, probability of a male dying at age a 

FemaleDeathByAge 𝑝
𝑊𝑓

𝑎( ) Input in year0, probability of a female dying at age a 
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Birth model 

Any female in the child-bearing years {AgeAtChild.lo, AgeAtChild.hi} is deemed 
capable of giving birth. The number of children, n, that she has in her life is dictated 
by the Poisson distribution where the mean of the Poisson distribution is the 𝑝

𝑙
𝑛( ) 

Total Fertility Rate (TFR) parameter2 . 

The probability that a mother (who does give birth) gives birth to a child at age a is 
determined from the BirthsByAgeOfMother distribution as . For any particular 𝑝

𝑏
𝑎( )

mother the births of multiple children are treated as independent events, so that the 
probability that a mother who produces N children produces n of them at age a is 
given as the Binomially distributed variable, 

The probability that the mother gives birth to n children at age a is 

Performing the summation in this equation gives the simplifying result that the 
probability pb(n at a) is itself Poisson distributed with mean parameter , λ𝑝

𝑏
𝑎( )

Thus, on average, a mother at age will produce children in that year. 𝑎 λ𝑝
𝑏

𝑎( ) 

The gender of the children3 is determined by the probability pmale=1-pfemale. In the 
baseline model this is taken to be the probability Nm/(Nm+Nf). 

Population dynamics 

In some year, Y, the population will consist of Nm males and Nf females with their 
respective age distributions. In the next year, Y’, the numbers will have been 
depleted by deaths and augmented by the Nnewborn births. The new, primed, 
population is determined from the old by the following equation set: 

3 The probability of child gender can be made time dependent. 
2 This could be made to be time dependent; in the baseline model it is constant. 
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The Population editor’ menu item Population Editor\View\Population dynamics\male 
implements these equations and draws projected populations year by year. 

Deaths from modelled diseases 

The simulation models any number of specified diseases some of which may be 
fatal. In the start year the simulation’s death model uses the diseases’ own mortality 
statistics to adjust the probabilities of death by age and gender. In the start year the 
net effect is to maintain the same probability of death by age and gender as before; 
in subsequent years, however, the rates at which people die from modelled diseases 
will change as modelled risk factors change. This the population dynamics sketched 
above will be only an approximation to the simulated population’s dynamics. The 
latter will be known only on completion of the simulation. 

Multiple population processing 

Multiple populations can be used in a simulation provided they are non-overlapping 
(people cannot belong to both). 

In a simulation, Monte Carlo trials are allocated between different populations in 
proportion to their total person count (malesCount+femalesCount). The idea is to 
provide a representative sample of the combined population. 
In a simulation, a population (pop) is current if the simulated year Y satisfies 
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Open populations 

This model is an open population model which allows people to enter and to depart 
from the population (departure probability pd(t)). 

Open population, births and deaths. 

In the year y the number of males and females in the population are denoted as 
{Nm(a,y), Nf(a,y)}, 

And we suppose that they have departure probabilities {pmd(a,y), pfd(a,y)}. The 
number of new arrivals into each age in the year Y are denoted {NmArr(a,y), NfArr(a,y)}. 

The following analysis applies equally to males and females and we drop the gender 
suffix. The male and female populations grow according to the recursion relations 

The longitudinal modelling of populations having known cross sectional data 

Given a set of X-sectional population projections {Km(a,y), Kf(a,y)|0<=a<=100; 
Y0<=y<=Y1} (the K- population) the question arises of how to model the lives of 
individuals within the population (the N-population). In the absence of precise arrival 
(immigration) and departure (emigration) statistics, many solutions exist. The 
population is constructed iteratively: given the population in year Y the next year’ 
population is calculated from the known birth and death rates; the departure 
probabilities and arrival numbers are found by matching with the projected 
K-population. 

Minimum arrival and departure model 

The minimum arrival and departure model fixes the modelled N-population in the 
start year and compensates in subsequent years either by having non-zero 
departure statistics (if N>K) or by importing new people (K>N). 
From equation : 

⇒ 
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⇒ 

The implementation of this model can be arranged using multiple populations – one 
population for each year of the simulation. The first population consists of the base 
line model that matches the N and K populations in the start year; subsequent 
populations contain the corrections (the arrivals, if any in that year). When arrivals 
enter the simulated population they have a start year corresponding to this 
population’s start year. They usually will have been modelled from birth in the 
appropriate risk and disease environment. Arrivals are ordinary members of the 
modelled population – they simply enter the population at times after the 
simulation-start time. Arrivals carry with them a population identifier. 

The numbers of males and females and their ages are known for all populations. 
Within the micro simulation multiple populations are sampled at a rate proportional to 
their population size. 

Risk factor module 

The distribution of risk factors (RF) in the population is estimated using regression 
analysis stratified by both sex S = {male, female} and age group A = e.g. {0-9, 10-19, 
..., 70-79, 80+}. The fitted trends are extrapolated to forecast the distribution of each 
RF category in the future. For each sex-and-age-group stratum, the set of 
cross-sectional, time-dependent, discrete distributions , 𝐷 = {𝑝

𝑘
𝑡( )|𝑘 = 1, …𝑁; 𝑡 > 0}

is used to manufacture RF trends for individual members of the population. 

Continuous risk factors 

In the case of a continuous RF, for each discrete distribution there is a continuous 𝐷 
counterpart. Let denote the RF value in the continuous scale and let be β 𝑓(β|𝐴, 𝑆, 𝑡) 
the probability density function of for age group and sex at time . Then β 𝐴 𝑆 𝑡

Equations and both refer to the same quantity. However, equation uses the 
definition of the probability density function to express the age-and-sex-specific 
percentage of individuals in RF category k at time t. Equation gives an estimate of 
this quantity using equation for all k = 0, …, N. The cumulative distribution function 
of is β 

At time t, a person with sex belonging to the age group is said to be on the –th 𝑆 𝐴 𝑝
percentile of this distribution if Given the cross-sectional 𝐹 𝐴, 𝑆, 𝑡( ) = 𝑝/100. 
information from the set of distributions , it is possible to simulate longitudinal 𝐷
trajectories by forming pseudo-cohorts within the population. A key requirement for 
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these sets of longitudinal trajectories is that they reproduce the cross-sectional 
distribution of RF categories for any year with available data. The method adopted 
here and in the earlier Foresight report [2] is based on the assumption that person’s 
RF value changes throughout their lives in such a way that they always have the 
same associated percentile rank. As they age, individuals move from one age group 
to another and their RF value changes so that they have the same percentile rank 
but of a different RF distribution. In a nutshell, we assume (in accordance with 
research on the long-term success rate in dieting) that relatively fat people will 
remain relatively fat and relatively thin people will remain relatively thin. Crucially it 
meets the important condition that the cross-sectional RF distributions obtained by 
simulation match the RF distributions of the observed data. 

The above procedure can be explained using the example of the alcohol 
consumption distribution. The alcohol consumption distributions are known for the 
population stratified by sex and age for all years of the simulation (by extrapolation of 
fitted model, see equation ). A person who is in age group and who grows ten year 𝐴 
older will at some time move into the next age group and will have an alcohol 𝐴' 
consumption that was described first by the distribution and then at the 𝑓(β|𝐴, 𝑆, 𝑡) 
later time by the distribution . If the alcohol consumption of that 𝑡' 𝑓(β|𝐴', 𝑆, 𝑡')
individual is on the -th percentile of the alcohol consumption distribution, their 𝑝
alcohol consumption will change from to so that β β' 

Where is the inverse of the cumulative distribution function of , which we model 𝐹−1 β
with a continuous uniform, normal or lognormal distribution (depending on the risk 
factor) within the RF categories. Equation guarantees that the transformation taking 
the random variable to ensures the correct cross-sectional distribution at time . β β' 𝑡'

The microsimulation first generates individuals from the RF distributions of the set 𝐷 
and, once generated, grows the individual’s RF in a way that is also determined by 
the set . It is possible to implement equation as a suitably fast algorithm. 𝐷

Disease module 

Disease modelling relies heavily on the sets of incidence, mortality, survival, relative 
risk and prevalence statistics. The microsimulation uses risk-dependent incidence 
statistics and these are inferred from the relative risk statistics and the distribution of 
the risk factor within the population. In the simulation, individuals are assigned a risk 
factor trajectory giving their personal risk factor history for each year of their lives. 
Their probability of getting a particular risk factor related disease in a particular year 
will depend on their risk factor state in that year. The necessary equations are given 
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below. The microsimulation model has the ability to model discrete multiple stages of 
a disease. 

Once a person has a fatal disease (or diseases) their probability of survival will be 
controlled by a combination of the disease-survival statistics and the probabilities of 
dying from other causes. Disease survival statistics are modelled as age and gender 
dependent exponential distributions. 

Relative risks 

The reported incidence risks for any disease do not make reference to any 
underlying risk factor. The microsimulation requires this dependence to be made 
manifest. 
The risk factor dependence of disease incidence has to be inferred from the 
distribution of the risk factor in the population (here denoted as p); it is a 
disaggregation process: 

Suppose that a is a risk factor state of some risk factor A and denote by pA(d|a,a,s) 
the incidence probability for the disease d given the risk state, a, the person’s age, a, 
and gender, s. The relative risk rA is defined by equation. 

Where a0 is the zero risk state (for example, the moderate state for alcohol 
consumption). 

The incidence probabilities, as reported, can be expressed in terms of the equation, 

Combining these equations allows the conditional incidence probabilities to be 
written in terms of known quantities 

Previous to any series of Monte Carlo trials the microsimulation program 
pre-processes the set of diseases and stores the calibrated incidence statistics 
pA(d|a0, a, s). 

For each scenario the incidence statistics are calibrated against the baseline trends. 
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Model output module 

Cross-sectional outputs (epidemiological and economic) per 100,000 of the 
population are computed for each year of the simulation. 

Epidemiological and economic outputs 

A range of different epidemiological outputs are produced by the model including: 
● Cumulative incidence rates 
● Quality Adjusted Life Years (QALY) 
● Incremental cost-effectiveness ratio (ICER) 
● Net monetary benefit (NMB) 

The QALY outputs can be discounted if required and this can be defined by the user 
at the start of a modelling project. The discounting rate each year (Discount(year)) 
was calculated as shown in equation (1.35). 

(0.33) 

Where, year start refers to the start year of the modelling which is 2019 in this study 
and R is the annual discount rate. The following sections describe some of these 
outputs in more detail. 

ICER: 

(0.34) 𝐼𝐶𝐸𝑅 = 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑐𝑜𝑠𝑡𝑠 
𝑄𝐴𝐿𝑌𝑠 𝑔𝑎𝑖𝑛𝑒𝑑 

NMB: 

(0.35) 𝑁𝑀𝐵 = 𝑄𝐴𝐿𝑌𝑠 𝑔𝑎𝑖𝑛𝑒𝑑 ×£20, 000 − 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑐𝑜𝑠𝑡𝑠 

Where is the additional costs incurred as the result of the policy, 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑐𝑜𝑠𝑡𝑠 
and is the willingness-to-pay / cost-effectiveness threshold for the UK. £20, 000 

Confidence intervals 

95% confidence intervals for microsimulation outputs were calculated at the single 
age / sex level using the formula: 

(0.36) 𝐶𝐼 
𝑥|𝑎,𝑠 

= ±1. 96∙𝑆𝐸 
𝑥|𝑎,𝑠 

• 𝑊 
𝑎,𝑠 

Where: 
● is an outcome measure or event, e.g. prevalence of a type 2 diabetes; 𝑥 
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● is the group’s age, in years, from to ; 𝑎 0 110
● is the group’s sex, of and ; 𝑠 𝑚𝑎𝑙𝑒 𝑓𝑒𝑚𝑎𝑙𝑒
● is the confidence interval for given age and sex ;𝐶𝐼 

𝑥|𝑎,𝑠 
𝑥 𝑎 𝑠

● is the population weight for age and sex (i.e., the number of people in 𝑊 
𝑎,𝑠 

𝑎 𝑠 

the population with that age and sex for that year); and 
● is the standard error of the estimate for event , age and sex , as 𝑆𝐸 

𝑥|𝑎,𝑠 
𝑥 𝑎 𝑠

estimated by: 

(0.37) 𝑆𝐸 
𝑥|𝑎,𝑠 

= 
𝑝 

𝑥|𝑎,𝑠 
(1−𝑝 

𝑥|𝑎,𝑠
) 

𝑁 
𝑎,𝑠 

Where is the number of microsimulation trials for age and sex , and is 𝑁
𝑎,𝑠 

𝑎 𝑠 𝑝
𝑥|𝑎,𝑠 

the proportion of this group in which the event/outcome has been recorded. 

Error propagation 

When adding or subtracting confidence intervals – for example, when summing all 
ages and sexes to achieve population-level estimates, or when calculating 
incremental costs – the total confidence interval was calculated as follows: 

(0.38) 
𝑖=1 

𝑛 

∑ 𝐶𝐼 
𝑖 
2 

Where is one of confidence intervals.. 𝐶𝐼
𝑖 

𝑛 

For calculation of the ICER CI we used the following equation: 

(0.39) ( 
𝐶𝐼 

𝑐 

𝑥 
𝑐 

) 
2 

+ ( 
𝐶𝐼 

𝑞 

𝑥 
𝑞 

) 
2 

∙𝐼𝐶𝐸𝑅 

Where: 
● and are the confidence intervals for incremental costs and QALYs 𝐶𝐼

𝑐 
𝐶𝐼

𝑞 

gained, respectively; 
● and are the estimates for incremental costs and QALYs gained, 𝑥

𝑐 
𝑥

𝑞 

respectively; and 
● is the incremental cost-effectiveness ratio, calculated as described 𝐼𝐶𝐸𝑅 

above. 

Modelling policy scenarios 

Specific assumptions were required for modelling each obesity policy. Nesta 
provided modelled data quantifying the impact of each policy on BMI and this 
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methodology is described elsewhere. This data was ingested into the HealthLumen 
microsimulation model. 

The majority of policies followed the same intervention structure. During the first year 
of the simulation, an individual’s eligibility for the intervention was assessed based 
on their age and BMI. For policies that affect children, to account for different obesity 
classifications based on age and sex, children were eligible if their BMI was ≥ the 
85th percentile according to UK90 reference data. If an individual was eligible, then 
the individual received the effect of the intervention in the following year, and any 
subsequent years thereafter, and experienced a reduction in their BMI. The BMI 
percentile is then recalculated using the new BMI value of that individual. For policies 
impacting a subset of children only, the impacts are applied only to children of that 
age, not when they move out of that age category. 

For policies impacting both children and adults, the effect of the intervention for 
adults is applied once the child turns 18. 

For the policy “Everyone with a BMI of 30 or above is offered a total diet replacement 
(TDR)”, which only affects adults, assessing eligibility remains the same. In this 
policy, 40% of individuals eligible were offered TDR, of which 13% agreed to undergo 
TDR. This was then translated into the model as 5.2% receiving TDR. Those that 
were offered TDR were not offered it in any subsequent years, and as such did not 
have another chance to be intervened upon. Individuals regain weight following the 
intervention. Individuals who underwent the intervention had a 33.33% chance of 
experiencing type 2 diabetes remission in the first year after the intervention [3]. Any 
individual who achieves type 2 diabetes remission can contract type 2 diabetes 
again based on disease incidence statistics after the first-year post-intervention. 
Eligible individuals who do not receive the intervention in that year are eligible for the 
intervention in the following year, given their BMI remains at 30 kg/m2 or above. 

For the policy “Introducing universal free school meals for all primary school children 
during term time”, in 2020, all children in school aged 5 to 12 were eligible to receive 
the intervention each year. Children with a BMI higher than the 95th percentile using 
the UK90 thresholds had a probability of their BMI being impacted on and reduced to 
the 94th percentile in that year, after which they follow trends for children on that 
percentile over time. The probability of being impacted by the intervention varied by 
age: eligible children aged 5 to 7 had an 8.7% chance, eligible children aged 8 to 10 
had a 6.5% chance, and eligible children aged 11 and 12 had a 2.8% chance of 
having their BMI percentile capped. Children with a BMI above 95th percentile who 
turned 5 in subsequent years (2021 to 2024) were also eligible to have an 8.7% 
probability of being impacted by the intervention in that year. 

For the policy “Invest a further £500 million over 5 years in local authorities to plan 
and deliver active transport through Active Travel England (or equivalent in DAs)”, a 
policy that affects adults. In this policy, eligible individuals had a 1.65% chance of 
receiving the effect of the intervention in the following year, and any subsequent 
years thereafter, and experienced a reduction in their BMI. 
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For the policy “Require 60 minutes of daily physical activity for school children” from 
2020 to 2024, all children in school aged 5 to 17 with a BMI over the 85th percentile 
using the UK90 thresholds were eligible to receive the intervention, as long as there 
were available spaces in the programme. Once all spaces in the programme quota 
were met, eligible children would no longer be impacted on by the intervention. In the 
start year of 2019 the quota was set at 1,744,786 places, and the number of 
available places each year was determined by the number of eligible children 
(depending on age and BMI). Children with a BMI above 95th percentile who turned 
5 in each modelling year were also eligible to be impacted by the intervention in the 
next years, depending on availability of programme spaces. 

For the policy “Extend access to pharmacological interventions by providing an extra 
£500 million per year of ring-fenced funding to provide increased access to NICE 
recommended weight loss treatments (Liraglutide and Semaglutide)”, a policy that 
only affects adults, eligibility was based on age, BMI, and ethnicity. In the scenario, 
adult individuals had a 13% chance of being Black or Asian (Census, 2021). 
Individuals were eligible for the intervention if they were 18 years old, and met one ≥ 
of the following criteria: 1) if they were non-White, and had a BMI of over 27.5 kg/m2; 
or 2) if their BMI was 30 kg/m2 or above. Of those eligible, approx. 148,810 received 
the intervention each year. BMI reduction was applied in the same year. Individuals 
with type 2 diabetes had a 41.2% remission rate in the first year after the 
intervention. This was based on a phase 4 observational study, where individuals 
with HbA1c levels of < 7.0% at 33-44 weeks were assumed to be in type 2 diabetes 
remission, where we have assumed the outcome of the study is an annual remission 
rate [4]. As clinical remission is < 6.5% HbA1c levels, we may therefore be 
overestimating remission. Any individual who achieves type 2 diabetes remission 
can contract type 2 diabetes again based on disease incidence statistics after the 
first-year post-intervention. 

For policy “Extend access to pharmacotherapy so that approximately 3 million more 
people (BMI≥30) receive Semaglutide each year”. After the first year, each year 
individuals were eligible for the intervention if they were ≥ 18 years old and their BMI 
was 30 kg/m2 or above. Of those eligible the BMI reduction was applied in the same 
year, but only up to 3,000,000 could receive the intervention each year. In the final 
year of the simulation (2024), only 1,030,394 individuals could receive the 
intervention, to align with Nesta’s modelling. Individuals with type 2 diabetes had a 
41.2% remission rate in the first year after the intervention, as above for policy 24. 
Any individual who achieved type 2 diabetes remission could contract type 2 
diabetes again based on disease incidence statistics after the first-year 
post-intervention. 

For the policy “Expand NHS provision of bariatric surgery to individuals with BMI ≥ 
35 with a pre-existing condition (specifically double the amount of people receiving 
surgery from approximately 6,500 per year to 13,000 per year)”, a policy that only 
affects adults, eligibility was based on whether the individual had type 2 diabetes or 
cardiovascular disease. If the individual had one of these two diseases, they were 
eligible to receive the intervention. Any individual who received the intervention had 
a 54% chance each year between 2020 and 2024 to achieve remission from 
hypertension within the intervention, and then a 58.8%, 57.7%, 56.7%, 55.8% an 
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54.7% for each consecutive year within the intervention to achieve remission from 
type 2 diabetes [5-7]. If an individual achieved remission for either disease, then they 
were no longer considered a prevalent disease case. The number of bariatric 
surgeries within the model that individuals could receive was 6,500 per year, to 
model the additional 6,500 surgeries each year required to double the amount of 
people receiving bariatric surgery. If the quota of surgeries was reached, no other 
individuals would receive the intervention, and the microsimulation would progress to 
the next year. 

For the policy “Provide £85 million of funding per year for increased roll-out of 
family-based programmes to the local authorities with the highest childhood obesity 
rates”, a policy that only affects children, the eligibility assessment is the same as the 
general policy method (aged between 5 and 18, and a BMI percentile of the 85th or 
higher), with two additional criterium: the child must live in QIMD 4 or 5, and have a 
parent living with excess weight. For children that were eligible, only 462,187 a year 
could receive the intervention (number provided by Nesta: £85 million / £320 per 
family * 1.74 children per family), and the effect of the intervention was applied in the 
same year of the simulation. In this scenario, individuals could only receive the 
intervention once. 

For the policy “Allocate £100 million per year to fund a programme of financial 
incentives to improve health behaviours in local authorities with the highest obesity 
rates”, a policy that affects adults only, the eligibility assessment is the same as the 
general policy method (age 18 to 100 and BMI ≥ 25). However, for adults that were 
eligible, only 465,116 could receive the effect of intervention. 
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